Using mobile applications in e-government for the purpose of health protection is a new idea during COVID-19 epidemic. Hence, the goal of this study is to examine the various factors that influence the use of SANAD App As a health protection tool. The factors were adopted from well-established models like UTAUT, TAM, and extended PBT. Using survey data from 442 SANAD App from Jordan, the model was empirically validated using AMOS 20 confirmatory factor analysis, structural equation modeling (SEM) and machine learning (ML) methods were performed to assess the study hypotheses. The ML methods used are ANN, SMO, the bagging reduced error pruning tree (RepTree), and random forest. The results suggested several key findings: the respondents’ performance expectancy, effort expectancy, social influence, facilitating conditions, perceived risk, trust, and perceived service quality of this digital technology were significant antecedents for their attitude to using it. The strength of these relationships is affected by the moderating variables, including age, gender, educational level, and internet experience on behavioral intention. Yet, perceived risk did not have a significant effect on attitude towards SANAD App The study adds to literature by empirically testing and theorizing the effects of SANAD App on public health protection.