An experiment was conducted to evaluate the role of different lipotropes in modulating immunity and biochemical plasticity under conditions of sublethal low-dose pesticide-induced stress in fish. Labeo rohita fish fingerlings were divided in two sets with one set of fish continuously exposed to low-dose endosulfan (1/10th of 96-h LC 50 ) for 21 days, the other was unexposed, and both sets of fish were fed with practical diets supplemented with either 2 % lecithin, 0.5 % betaine, or 0.1 % choline and compared against unsupplemented diet. Low-dose endosulfan exposure had adverse effects (P<0.05/P<0.01) on hematological profile (erythrocyte count, hemoglobin, and hematocrit), serum protein (total protein, albumin, and globulin) and lipid profile (cholesterol and triglyceride), anti-oxidative status (ascorbic acid content of muscle, liver, brain, and kidney and activity of anti-oxidative enzymes: catalase and superoxide dismutase), neurotransmission (acetylcholinesterase activity in muscle and brain), immunological attributes (WBC count, albumin to globulin ratio, phagocytic activity, and serum cortisol), and metabolic plasticity as revealed from enzyme activities (muscle lactate dehydrogenase, liver and kidney glucose-6-phosphatase dehydrogenase-G6PDH activity). Dietary lipotropes prevented these effects completely or partially and the effects were lipotrope dependent. Kinetics (maximum velocity value V max , catalytic efficiency and Michaelis constant K m ) of G6PDH enzyme from crude extracts of liver and kidney indicated inhibition due to endosulfan but lipotropes could protect enzyme and showed a stabilizing effect. The supplements also helped maintain integrity of histoarchitecture of the hepatocytes in endosulfan-exposed fish to a great extent. Feeding lipotropes to fish reared in endosulfan-free water also improved hematological and serum protein and lipid profiles and were immunostimulatory. In conclusion, dietary lipotropes, especially betaine and lecithin at the levels used, improve erythropoiesis, serum protein and lipid profile, anti-oxidant status, immunocompetence, neurotransmission, and protect the livers of L. rohita fingerlings even when continuously exposed to low-dose endosulfan.