Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A Pickering emulsion was prepared using β-cyclodextrin (β-CD) and a cinnamaldehyde (CA)/β-CD composite as emulsifiers and corn oil, camellia oil, lard oil, and fish oil as oil phases. It was confirmed that Pickering emulsions prepared with β-CD and CA/β-CD had good storage stability. The rheological experiments showed that all emulsions had G′ values higher than G″, thus confirming their gel properties. The results of temperature scanning rheology experiments revealed that the Pickering emulsion prepared with β-CD and CA/β-CD composites had high stability, in the range of 20–65 °C. The chewing properties of Pickering emulsions prepared by β-CD and corn oil, camellia oil, lard, and herring oil were 8.02 ± 0.24 N, 7.94 ± 0.16 N, 36.41 ± 1.25 N, and 5.17 ± 0.13 N, respectively. The chewing properties of Pickering emulsions made with the CA/β-CD composite and corn oil, camellia oil, lard, and herring oil were 2.51 ± 0.05 N, 2.56 ± 0.05 N, 22.67 ± 1.70 N, 3.83 ± 0.29 N, respectively. The texture properties confirmed that the CA/β-CD-composite-stabilized-emulsion had superior palatability. After 28 days at 50 °C, malondialdehyde (MDA) was detected in the emulsion. Compared with the β-CD and CA + β-CD emulsion, the CA/β-CD composite emulsion had the lowest content of MDA (182.23 ± 8.93 nmol/kg). The in vitro digestion results showed that the free fatty acid (FFA) release rates of the CA/β-CD composite emulsion (87.49 ± 3.40%) were higher than those of the β-CD emulsion (74.32 ± 2.11%). This strategy provides ideas for expanding the application range of emulsifier particles and developing food-grade Pickering emulsions with antioxidant capacity.
A Pickering emulsion was prepared using β-cyclodextrin (β-CD) and a cinnamaldehyde (CA)/β-CD composite as emulsifiers and corn oil, camellia oil, lard oil, and fish oil as oil phases. It was confirmed that Pickering emulsions prepared with β-CD and CA/β-CD had good storage stability. The rheological experiments showed that all emulsions had G′ values higher than G″, thus confirming their gel properties. The results of temperature scanning rheology experiments revealed that the Pickering emulsion prepared with β-CD and CA/β-CD composites had high stability, in the range of 20–65 °C. The chewing properties of Pickering emulsions prepared by β-CD and corn oil, camellia oil, lard, and herring oil were 8.02 ± 0.24 N, 7.94 ± 0.16 N, 36.41 ± 1.25 N, and 5.17 ± 0.13 N, respectively. The chewing properties of Pickering emulsions made with the CA/β-CD composite and corn oil, camellia oil, lard, and herring oil were 2.51 ± 0.05 N, 2.56 ± 0.05 N, 22.67 ± 1.70 N, 3.83 ± 0.29 N, respectively. The texture properties confirmed that the CA/β-CD-composite-stabilized-emulsion had superior palatability. After 28 days at 50 °C, malondialdehyde (MDA) was detected in the emulsion. Compared with the β-CD and CA + β-CD emulsion, the CA/β-CD composite emulsion had the lowest content of MDA (182.23 ± 8.93 nmol/kg). The in vitro digestion results showed that the free fatty acid (FFA) release rates of the CA/β-CD composite emulsion (87.49 ± 3.40%) were higher than those of the β-CD emulsion (74.32 ± 2.11%). This strategy provides ideas for expanding the application range of emulsifier particles and developing food-grade Pickering emulsions with antioxidant capacity.
The ubiquitous presence of contaminants in water poses a major threat to the safety of ecosystems and human health, and so more materials or technologies are urgently needed to eliminate pollutants. Polymer materials have shown significant advantages over most other adsorption materials in the decontamination of wastewater by virtue of their relatively high adsorption capacity and fast adsorption rate. In recent years, “green development” has become the focus of global attention, and the environmental friendliness of materials themselves has been concerned. Therefore, natural polymers-derived materials are favored in the purification of wastewater due to their unique advantages of being renewable, low cost and environmentally friendly. Among them, natural plant gums show great potential in the synthesis of environmentally friendly polymer adsorption materials due to their rich sources, diverse structures and properties, as well as their renewable, non-toxic and biocompatible advantages. Natural plant gums can be easily modified by facile derivatization or a graft polymerization reaction to enhance the inherent properties or introduce new functions, thus obtaining new adsorption materials for the efficient purification of wastewater. This paper summarized the research progress on the fabrication of various gums-based adsorbents and their application in the decontamination of different types of pollutants. The general synthesis mechanism of gums-based adsorbents, and the adsorption mechanism of the adsorbent for different types of pollutants were also discussed. This paper was aimed at providing a reference for the design and development of more cost-effective and environmentally friendly water purification materials.
Pharmaceutical drugs, including antibiotics and hormonal agents, pose a significant threat to environmental and public health due to their persistent presence in aquatic environments. Colistin (KOL), fluoxetine (FLUO), amoxicillin (AMO), and 17-alpha-ethinylestradiol (EST) are pharmaceuticals (PhCs) that frequently exceed regulatory limits in water and wastewater. Current removal methods are mainly ineffective, necessitating the development of more efficient techniques. This study investigates the use of synthetic zeolite (NaP1_FA) and zeolite-carbon composites (NaP1_C), both derived from fly ash (FA), for the removal of KOL, FLUO, AMO, and EST from aquatic environments. Batch adsorption experiments assessed the effects of contact time, adsorbent dosage, initial concentration, and pH on the removal efficiency of the pharmaceuticals. The results demonstrated that NaP1_FA and NaP1_C exhibited high removal efficiencies for all tested pharmaceuticals, achieving over 90% removal within 2 min of contact time. The Behnajady-Modirshahla-Ghanbary (BMG) kinetic model best described the adsorption processes. The most effective sorption was observed with a sorbent dose of 1–2 g L−1. Regarding removal efficiency, the substances ranked in this order: EST was the highest, followed by AMO, KOL, and FLUO. Sorption efficiency was influenced by the initial pH of the solutions, with optimal performance observed at pH 2–2.5 for KOL and FLUO. The zeolite-carbon composite NaP1_C, due to its hydrophobic nature, showed superior sorption efficiency for hydrophobic pharmaceuticals like FLUO and EST. The spectral analysis reveals that the primary mechanism for immobilizing the tested PhCs on zeolite sorbents is mainly due to physical sorption. This study underscores the potential of utilizing inexpensive, fly ash-derived zeolites and zeolite-carbon composites to remove pharmaceuticals from water effectively. These findings contribute to developing advanced materials for decentralized wastewater treatment systems, directly addressing pollution sources in various facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.