Modification of zeolites with organic compounds is of increasing interest due to their significant potential in removing emerging pollutants from water. In this work, zeolites from fly ash with three different structure types, NaX (faujasite), NaA (Linde A) and NaP1 (gismondine), were modified with β-cyclodextrin (β-CD), and their adsorption efficacy towards tetracycline (TC) antibiotic in aqueous solutions have been studied. To assess the effect of modification on the zeolites, they were subjected to chemical, mineralogical and surface analyses using X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscope (SEM), N2 adsorption/desorption isotherm, Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The maximum adsorption capacity for NaX-CD, NaA-CD and NaP1-CD was around 48, 60, and 38 mg/g, respectively. The fastest adsorption rate was observed for NaP1-CD, which achieved adsorption equilibria after 200 min, while for NaX-CD and NaA-CD it was established after around 24 h. The kinetic data were best described by the Elovich model, followed by pseudo-second order, while the Sips and Redlich–Peterson models were the most suitable to describe the adsorption isotherms. Based on the adsorption data as well as FTIR and XPS results, TC adsorption efficacy is strongly related to the amount of CD attached to the mineral, and hydrogen bonding formation probably plays the major role between CDs and adsorbate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.