As the continuum limit is approached, lattice QCD simulations tend to get
trapped in the topological charge sectors of field space and may consequently
give biased results in practice. We propose to bypass this problem by imposing
open (Neumann) boundary conditions on the gauge field in the time direction.
The topological charge can then flow in and out of the lattice, while many
properties of the theory (the hadron spectrum, for example) are not affected.
Extensive simulations of the SU(3) gauge theory, using the HMC and the closely
related SMD algorithm, confirm the absence of topology barriers if these
boundary conditions are chosen. Moreover, the calculated autocorrelation times
are found to scale approximately like the square of the inverse lattice
spacing, thus supporting the conjecture that the HMC algorithm is in the
universality class of the Langevin equation.Comment: Plain TeX source, 26 pages, 4 figures include