The aim of this study was to synthesize an innovative composite scaffold, which structured of clinoptilolite-nanohydroxyapatite/chitosan-gelatin (CLN-nHA/CS-G) with enhanced attributes for utilization in the bone tissue engineering. This composite scaffold was prepared by blending the CLN, nHA, chitosan, and gelatin solution followed by a freeze-drying step. The fabricated composite scaffolds were studied using BET, FTIR, XRD, and SEM techniques. The highly porous composite scaffolds with a pore size of 200 ± 100 μm were synthesized. Moreover, the effects of CLN and nHA on the physicochemical features of the scaffold such as density, swelling ratio, biomineralization, biodegradation, and mechanical behavior were studied. Compared with CS-G scaffold, the presence of CLN and nHA leads to an increased surface area, increased biomineralization, and low rate of degradation in simulated body fluid solution (SBF) and mechanical strength. Cytotoxicity of the CLN-nHA/CS-G scaffold was studied by MTT assay on human dental pulp stem cells (h-DPSCs). The biological response of h-DPSCs showed no toxicity and studied cells proliferated and attached on the pore surfaces of the scaffold. Results indicated that introducing CLN and nHA to composite improves the scaffold characteristics in a way that makes it suitable for bone tissue engineering.
K E Y W O R D Sbone tissue engineering, chitosan, clinoptilolite, scaffold, stem cells