In this research, the production cross sections for QCD matter, neutrino and dark energy due to acceleration of Universe is calculated. To obtain these cross sections, the Universe production cross section is multiplied by the particle or dark energy distribution in accelerating Universe. Also missing cross section for each matter and dark energy due to formation of event horizon, is calculated. It is clear that the cross section of particles produced near event horizon of Universe is much larger for higher acceleration of Universe. This is because as the acceleration of Universe becomes larger, the Unruh temperature becomes larger and the thermal radiations of particles are enhanced. There are different channels for producing Higgs boson in accelerating Universe. Universe maybe decay to quark and gluons, and then these particles interact with each other and Higgs boson is produced. Also, some Higgs boson are emitted directly from event horizon of Universe. Comparing Higgs boson cross sections via different channels, it is observed that at lower acceleration, < 2.5 , the Universe will not be able to emit Higgs, but is still able to produce a quark and eventually for < 1.5 the Universe can only emit massless gluons. As the acceleration of Universe at the LHC increases, > 2.5 , most of Higgs boson production will be due to Unruh effect near event horizon of Universe. Finally comparing the production cross section for dark energy with particle cross sections, it is found that the cross section for dark energy is dominated by QCD matter, Higgs boson and neutrino. This result is consistent with previous predictions for dark energy cross section.