The severe xeroderma pigmentosum/Cockayne syndrome (XP/CS) syndrome is caused by mutations in the XPB, XPD and XPG genes that encode the helicase subunits of TFIIH and the 3 0 endonuclease of nucleotide excision repair (NER). Because XPB and XPD have been implicated in p53-mediated apoptosis, we examined the possible involvement of XPG in this process. After ultraviolet light (UV) irradiation, primary fibroblasts of XP complementation group G (XP-G) individuals with CS enter apoptosis more readily than other NER-deficient cells, but this is unlinked to unrepaired damage. These XP-G/ CS cells accumulate p53 post-UV but they fail to accumulate the 90/92 kDa isoforms of Mdm2 and their cellular distribution of Mdm2 is impaired. Apoptosis levels revert to wild type, Mdm2 90/92 kDa isoforms accumulate, and Mdm2 regains its normal post-UV nuclear location in transduced XP-G/CS cells expressing wild-type XPG, but not an XPG catalytic site mutant. These results suggest that XPG suppresses UVinduced apoptosis and that this suppression, most simply, requires its endonuclease function.