Nowadays the rationalization of electrical energy consumption is a serious concern worldwide. Energy consumption reduction and energy efficiency appear to be the two paths to addressing this target. To achieve this goal, many different techniques are promoted, among them, the integration of (artificial) intelligence in the energy workflow is gaining importance. All these approaches have a common need: data. Data that should be collected and provided in a reliable, accurate, secure, and efficient way. For this purpose, sensing technologies that enable ubiquitous data acquisition and the new communication infrastructure that ensure low latency and high density are the key. This article presents a sensing solution devoted to the precise gathering of energy parameters such as voltage, current, active power, and power factor for server farms and datacenters, computing infrastructures that are growing meaningfully to meet the demand for network applications. The designed system enables disaggregated acquisition of energy data from a large number of devices and characterization of their consumption behavior, both in real time. In this work, the creation of a complete multiport power meter system is detailed. The study reports all the steps needed to create the prototype, from the analysis of electronic components, the selection of sensors, the design of the Printed Circuit Board (PCB), the configuration and calibration of the hardware and embedded system, and the implementation of the software layer. The power meter application is geared toward data centers and server farms and has been tested by connecting it to a laboratory server rack, although its designs can be easily adapted to other scenarios where gathering the energy consumption information was needed. The novelty of the system is based on high scalability built upon two factors. Firstly, the one-on-one approach followed to acquire the data from each power source, even if they belong to the same physical equipment, so the system can correlate extremely well the execution of processes with the energy data. Thus, the potential of data to develop tailored solutions rises. Second, the use of temporal multiplexing to keep the real-time data delivery even for a very high number of sources. All these ensure compatibility with standard IoT networks and applications, as the data markup language is used (enabling database storage and computing system processing) and the interconnection is done by well-known protocols.