It is highly desired yet challenging to obtain analytical approximate solutions to strongly nonlinear oscillators accurately and efficiently. Here we propose a new approach, which combines the homtopy concept with a “residue-regulating” technique to construct a continuous homotopy from an initial guess solution to a high-accuracy analytical approximation of the nonlinear problems, namely the residue regulating homotopy method (RRHM). In our method, the analytical expression of each order homotopy-series solution is associated with a set of base functions which are pre-selected or generated during the previous order of approximations, while the corresponding coefficients are solved from deformation equations specified by the nonlinear equation itself and auxiliary residue functions. The convergence region, rate and final accuracy of the homotopy are controlled by a residue-regulating vector and an expansion threshold. General procedures of implementing RRHM are demonstrated using the Duffing and Van der Pol-Duffing oscillators, where approximate solutions containing abundant frequency components are successfully obtained, yielding significantly better convergence rate and performance stability compared to the other conventional homotopy-based methods.