2016
DOI: 10.1515/geo-2016-0010
|View full text |Cite
|
Sign up to set email alerts
|

The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

Abstract: Abstract:The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with arti cial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identi ed based on interpretations of optical remote sensing data (Aerial photographs) followed by eld surveys. A spatial database considering forest, geophys… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0
5

Year Published

2017
2017
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 30 publications
(13 citation statements)
references
References 45 publications
0
8
0
5
Order By: Relevance
“…Estos resultados difieren de otros estudios que utilizaron la misma metodología. Para Ayalew y Yamagishi (2004) el parámetro más relevante en su modelo es la distancia a las carreteras; para Lee (2005) es la pendiente; para Pineda et al (2011) es la morfología de pendientes o tipo de relieve; para Akbari et al (2014) es la pendiente seguida de la distancia a carreteras; para Lee et al (2016) es la pendiente seguida del drenaje del suelo. A diferencia de los estudios anteriores que se focalizan en inventariar exclusivamente los deslizamientos, el presente trabajo incluye todas las posibles formas de erosión y, como consecuencia, los factores intrínsecos del terreno poseen una influencia relativa más baja.…”
Section: Discussionunclassified
See 2 more Smart Citations
“…Estos resultados difieren de otros estudios que utilizaron la misma metodología. Para Ayalew y Yamagishi (2004) el parámetro más relevante en su modelo es la distancia a las carreteras; para Lee (2005) es la pendiente; para Pineda et al (2011) es la morfología de pendientes o tipo de relieve; para Akbari et al (2014) es la pendiente seguida de la distancia a carreteras; para Lee et al (2016) es la pendiente seguida del drenaje del suelo. A diferencia de los estudios anteriores que se focalizan en inventariar exclusivamente los deslizamientos, el presente trabajo incluye todas las posibles formas de erosión y, como consecuencia, los factores intrínsecos del terreno poseen una influencia relativa más baja.…”
Section: Discussionunclassified
“…Comparativamente en el estudio de Dai y Lee (2002) es del 85 %, en Lee (2005) ese mismo cálculo es del 78,6 % y del 80,01 % en Lee et al (2016). Aplicando el método de validación ROC, este es del 76,5 %, siendo en el estudio de Ayalew y Yamagishi, (2004) de un 83,58 %.…”
Section: Discussionunclassified
See 1 more Smart Citation
“…Different methods were applied for the landslide location identification such as inventory reports, high-resolution satellite images, and extensive field surveys. In this study, 17 landslide effective factors are used based on the literature review and data availability [6,22,26,[39][40][41][42][43]. These factors include aspect, slope, altitude, maximum curvature, profile curvature, topographic wetness index (TWI), topographic positioning index (TPI), distance from fault, convexity, forest type, forest diameter, forest density, land use and land cover (LULC), lithology, soil, flow accumulation, and mid slope position.…”
Section: Data Usedmentioning
confidence: 99%
“…Aditian, Kubota and Shinohara used three methods, FR, LR, and ANN, in a study of landslides triggered by heavy rains in the Ambon region of Indonesia: the study showed that the ANN had the best results among these three methods, and was the best method for interpreting the relationship between landslide and LSM factors [3]. Saro et al used two methods, LR and ANN, for the construction of an LSM in Inje City, South Korea, with the results indicating that the accuracy of the ANN was higher than that of the LR model [4]. Hong et al compared the effects of four support vector machine (SVM) models based on different kernel functions in the LSM by taking Luxi City, Jiangxi Province, as a study area.…”
Section: Introductionmentioning
confidence: 99%