Hydrophobicity plays an important role in numerous physicochemical processes from the process of dissolution in water to protein folding, but its origin at the fundamental level is still unclear. The classical view of hydrophobic hydration is that, in the presence of a hydrophobic solute, water forms transient microscopic "icebergs" arising from strengthened water hydrogen bonding, but there is no experimental evidence for enhanced hydrogen bonding and/or icebergs in such solutions. Here, we have used the redshifts and line shapes of the isotopically decoupled IR oxygen-deuterium (O-D) stretching mode of HDO water near small purely hydrophobic solutes (methane, ethane, krypton, and xenon) to study hydrophobicity at the most fundamental level. We present unequivocal and model-free experimental proof for the presence of strengthened water hydrogen bonds near four hydrophobic solutes, matching those in ice and clathrates. The water molecules involved in the enhanced hydrogen bonds display extensive structural ordering resembling that in clathrates. The number of ice-like hydrogen bonds is 10-15 per methane molecule. Ab initio molecular dynamics simulations have confirmed that water molecules in the vicinity of methane form stronger, more numerous, and more tetrahedrally oriented hydrogen bonds than those in bulk water and that their mobility is restricted. We show the absence of intercalating water molecules that cause the electrostatic screening (shielding) of hydrogen bonds in bulk water as the critical element for the enhanced hydrogen bonding around a hydrophobic solute. Our results confirm the classical view of hydrophobic hydration.hydrophobic hydration | hydrogen bonding | IR spectroscopy | electrostatic screening | ab initio molecular dynamics D espite its great importance in numerous phenomena, the origin of hydrophobicity remains one of the most disputed topics in science (1-5). Experimental studies have shown that small purely hydrophobic solutes (alkanes and noble gases) in water increase the order (6, 7) and restrict the mobility (8) of neighboring water molecules. There are several opposing views on how to explain these data. The classical view is that a solute modifies water structure by forming transient, semiordered clathrate-like clusters ("icebergs"; used here only as a loose term) around it, arising from enhanced water hydrogen bonding (H bonding) (6, 7). This enhancement is brought about by either strengthening (9) or increasing the number of water to water H bonds (10). The classical view explains the characteristic changes in the thermodynamic variables of hydrophobic hydration (positive ΔG, ΔC p , negative ΔS, and ΔH) and the restricted mobility of water molecules observed by NMR (8). Neutron diffraction (11, 12) and extended X-ray absorption fine structure (EXAFS) (13) studies, however, show that the water molecules around small purely hydrophobic molecules do not differ significantly from those in pure liquid water. According to the dynamic view, the hydrophobic solute causes slowdown of t...