Context. Stellar rotation is of key importance in the formation process, the evolution, and the final fate of massive stars. Aims. We perform a reassessment of the empirical rotational properties of Galactic massive O-type stars using the results from a detailed analysis of ground-based multi-epoch optical spectra obtained in the framework of the IACOB & OWN surveys. Methods. Using high-quality optical spectroscopy, we established the velocity distribution for a sample of 285 apparently single and single-line spectroscopic binary (SB1) Galactic O-type stars. We also made use of the rest of the parameters from the quantitative spectroscopic analysis presented in prior IACOB papers (mainly T eff , log g, and multiplicity) to study the v sin i behavior and evolution from the comparison of subsamples in different regions of the spectroscopic Hertzsprung-Rusell diagram (sHRD). Our results are compared to the main predictions -regarding current and initial rotational velocities -of two sets of well-established evolutionary models for single stars, as well as from population synthesis simulations of massive stars that include binary interaction. Results. We reassess the known bimodal nature of the v sin i distribution, and find a non-negligible difference between the v sin i distribution of single and SB1 stars. We provide empirical evidence supporting the proposed scenario that the tail of fast rotators is mainly produced by binary interactions. Stars with extreme rotation (>300 km s −1 ) appear as single stars that are located in the lower zone of the sHRD. We notice little rotational braking during the main sequence, a braking effect independent of mass (and wind strength). The rotation rates of the youngest observed stars lean to an empirical initial velocity distribution with 20% of critical velocity. Lastly, a limit in v sin i detection below 40-50 km s −1 seems to persist, especially in the upper part of the sHRD, possibly associated with the effect of microturbulence in the measurement methodology used.