The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. Abstract. We consider the following problem: can a certain graph parameter of some given graph G be reduced by at least d, for some integer d, via at most k graph operations from some specified set S, for some given integer k? As graph parameters we take the chromatic number and the clique number. We let the set S consist of either an edge contraction or a vertex deletion. As all these problems are NP-complete for general graphs even if d is fixed, we restrict the input graph G to some special graph class. We continue a line of research that considers these problems for subclasses of perfect graphs, but our main results are full classifications, from a computational complexity point of view, for graph classes characterized by forbidding a single induced connected subgraph H.