Crystalline Ba0.3Sr0.7Zr0.18Ti0.82O3 (BSZT) thin film was grown on Pt(111)/Ti/SiO2/Si substrate using radio frequency (RF) magnetron sputtering. Based on our best knowledge, there are few reports in the literature to prepare the perovskite BSZT thin films, especially using the RF magnetron sputtering method. The microstructure of the thin films was characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), and capacitance properties, such as capacitance density, leakage behavior, and the temperature dependence of capacitance were investigated experimentally. The prepared perovskite BSZT film showed a low leakage current density of 7.65 × 10−7 A/cm2 at 60 V, and large breakdown strength of 4 MV/cm. In addition, the prepared BSZT thin film capacitor not only exhibits an almost linear and acceptable change (ΔC/C ~13.6%) of capacitance from room temperature to 180 °C but also a large capacitance density of 1.7 nF/mm2 at 100 kHz, which show great potential for coupling and decoupling applications.