The precise catalytic strategies used for the breakdown of the complex bacterial polysaccharide xanthan, an increasingly frequent component of processed human foodstuffs, have remained a mystery. Here we present the characterization of an endo-xanthanase from Paenibacillus sp. 62047. We show that it is a CAZy family 9 glycoside hydrolase (GH9) responsible for the hydrolysis of the xanthan backbone, capable of generating tetrameric xanthan oligosaccharides from polysaccharide lyase family 8 (PL8) xanthan lyase-treated xanthan. 3-D structure determination reveals a complex multi-modular enzyme in which a catalytic (α/α)6 barrel is flanked by an N-terminal "immunoglobulin-like" (Ig-like) domain (frequently found in GH9 enzymes) and by four additional C-terminal all β-sheet domains which have very few homologs in sequence databases and, at least, one of which functions as a new xanthan-binding domain, now termed CBM84. The solution phase conformation and dynamics of the enzyme in the native calcium-bound state and in the absence of calcium were probed experimentally by hydrogen/deuterium exchange mass spectrometry. Measured conformational dynamics were used to guide the protein engineering of enzyme variants with increased stability in the absence of calcium; a property of interest for the potential use of the enzyme in cleaning detergents. The ability of hydrogen/deuterium exchange mass spectrometry to pinpoint dynamic regions of a protein under stress (e.g. removal of calcium ions) makes this technology a strong tool for improving protein catalyst properties by informed engineering.