Summary
Three‐dimensional structure of a wide range of biological specimens can be computed from images collected by transmission electron microscopy. This information integrated with structural data obtained with other techniques (e.g., X‐ray crystallography) helps structural biologists to understand the function of macromolecular complexes and organelles within cells. In this paper, we compare two three‐dimensional transmission electron microscopy techniques that are becoming more and more related (at the image acquisition level as well as the image processing one): electron tomography and single‐particle analysis. The first one is currently used to elucidate the three‐dimensional structure of cellular components or smaller entire cells, whereas the second one has been traditionally applied to structural studies of macromolecules and macromolecular complexes. Also, we discuss possibilities for their integration with other structural biology techniques for an integrative study of living matter from proteins to whole cells.