The present study was designed to investigate the early maturation of the brainstem regulation of the cochlear function in preterm neonates. Evoked otoacoustic emissions (EOAE) and their regulation via the medial olivocochlear efferent (MOC) reflex were investigated in a large population of preterm neonates and compared with full-term neonates and young babies from birth to 4 y and school-aged children. In 28-wk preterm neonates, EOAE were seen in the mid-frequency range. These responses extended both to the low (down to 1025 Hz) and high (up to 6152 Hz) frequency ranges at 38 wk of gestational age and remained stable up to 4 mo. At this stage, the amplitude of EOAE overlapped adult values. EOAE amplitudes then decreased to reach adult values at 3 y of age. Maturation of MOC efferents innervating the outer hair cells was investigated by studying the suppressive effect of contralateral sound on the EOAE amplitudes (MOC reflex T he cochlea, the auditory organ of the inner ear, contains two types of mechanosensory hair cells, inner hair cells, and OHC. OHC are precisely adapted for mechanoreception, i.e. transduction of cochlear partition vibration into a bioelectrical signal. OHC electromotile properties (1) led to the concept of a "cochlear amplifier" involving active biomechanical feedback from OHC to the basilar membrane. This assumption is further supported by the cochlea's ability to produce acoustic energy, which can be easily detected by a sensitive microphone placed in the ear canal (2). The emitted responses, named evoked otoacoustic emissions (EOAE), are vulnerable to the same forms of interference that reduce or destroy OHC function (3).The CNS controls the motor activity of the OHC via MOC neurons, originating in the medial nuclei of the superior olivary complex. Three populations of neurons projecting from the MOC efferents to each cochlea have been shown: 1) the largest group of efferent units, which are the most responsive to ipsilateral sound stimulation, originates in the contralateral medial olivary complex and constitutes the crossed projection; 2) a group consisting of efferent units, which respond best to a contralateral sound stimulation, originates in the ipsilateral medial olivary complex and constitutes the uncrossed projection; 3) a group of efferent neurons, which respond to both ipsi-and contralateral stimulation (4). Interrupting the MOC efferents at the floor of the fourth, which severed all the efferents crossing the middle line, but spared most of the uncrossed fibers, did not affect the suppression of auditory nerve responses induced by the contralateral sound stimulation (5). However, when cuts damaged both the crossed and uncrossed fibers at the vestibulocochlear anastomosis, the suppressive effect of the contralateral sound stimulation on auditory nerve responses was eliminated. Consequently, the suppressive effect of the contralateral sound stimulation is mediated by the uncrossed part of MOC efferents. Given that similar findings were also observed on distortion prod...