Alarming levels of particulate matter pollution in air pose a serious health threat in several countries, therefore intriguing a strong need for an economic and a viable technology of air filtration. Current air purification technology is rather expensive with certain types even having the risk of emitting hazardous by-products. The authors have developed a multifunctional air filter inspired from the nasal hairs possessing an ability to specifically trap/exhale the foreign particles and allergens while still letting the air flow. This design is achieved by introducing different functionalities at different dimensional scale employing a bottom-up approach starting with an organic molecule which is further self-organized to form nanoparticles and ultimately to a nanofibrous mesh. While the molecular building block inherently possesses the property of shielding Ultraviolet (UV) rays, the nanofibrous mesh built up from it aids in trapping the particulate matter while maintaining good air flow. By controlling the concentration of the organic molecule, the formation of fibers has been enabled in the nanoscale regime to obtain high particle-capture possibilities. The self-assembled nanofibrous filter thus designed has achieved a high filtration efficiency of ≈90% for the PM 2.5 particle in congruence with the ability to block the harmful UV radiations.