There are increasing demands to substitute the plastic from the petrochemical industry with bacterial cellulose which were produced from microorganisms as Acetobactor xylinum strain. The aim of this study was to produce bacterial cellulose from banana peels which are agricultural waste around Walailak University area. The banana peels were used as a carbon source together with nutrient medium for the growth of bacteria. The ratio between Hestrin and Schramm nutrient medium (HS) with banana peel to DI water was 1:0.5, 1:1, and 1:1.5 (%V/V). Sugar content in banana peel (control) was 4.0% Degree Brix. The initial pH was 6.0 and sugar contents varied in this study were 5.5%, and 11% Degree Brix. A.xylinum dosages used in the cultivation were 5, 6.67, and 8.33 (%V/V) respectively. The cultivation times were 15 days at the temperature of 30 °C. As a result, the highest yield of produced bacterial cellulose was 19.46 gram and the best condition which maximum yield of bacterial cellulose 1.95% can be obtained was 11% (Brix) of sugar content, 6.67 (%V/V) of A.xylinum added, and 1:1.5 of banana peel to DI water. The physical properties of bacterial cellulose were studied with ATR-FTIR spectroscopy which shown adsorption spectrum at 3279, 2915, 1627 and 1013 cm-1 corresponding to the-OH,-CH,-CH2 and carboxyl function groups, respectively. Glass transition Temperature (Tg) was 116.85°C. Tensile strength was measured with UTM and had average value of 41.13±5.43 Mpa. The bacterial cellulose had moisture content of 90.00±0.02%. The synthesized bacterial cellulose can be used as adsorption media and also has its chemical properties like petroleum polymer. Result suggested that the similar property can be observed when compared with petroleum plastic, however with the exception of methyl group (CH3). Methyl group which can be found in plastic synthesized from petrochemical is responsible for the strength of plastic. Thus, bacterial cellulose, synthesized in this study, is not as strong as petrochemical plastic. But it can be used to produce bio-plastics because of the-CH and-CH2 functional group attached. With the similar physical and chemical properties to those of petrochemical plastic, bacterial cellulose can be used as biopolymer.
Activated carbons are the most widely used adsorbents; however, producing high‐performance mesoporous activated carbons with simple technology still remains a challenge. In this research, waste macadamia nut shell (MNS) was explored as precursor for preparing mesoporous activated carbons by carbon dioxide activation. The material characteristics of MNS‐based activated carbon (MAC) were thoroughly examined in comparison with a premium‐grade commercial activated carbon (CAC). MAC and CAC had specific surface areas of 830 and 1,299 m2 g−1, respectively. Although CAC had a predominantly microporous structure, about 74% of the pore volume of MAC is composed of mesopores. Adsorption performances were evaluated in batch experiments using methylene blue model pollutant and demonstrated 135 and 181 mg g−1 saturation capacities for MAC and CAC, respectively. Non‐linear regression found that the fractal‐like pseudo first‐order model accurately described sorption kinetics, and intraparticle diffusion was the rate‐limiting step. Among 6 established isotherm models, the Liu equilibrium model showed the best statistics. Thermodynamic analysis verified that the process was favourable and involved physisorption. These results show that valuable mesoporous activated carbons can be prepared from the biowaste MNS with simple production technology to suit environmental and industrial applications.
Photocatalytic oxidation (PCO) was investigated in a bench-scale reactor for the abatement of two airborne organic contaminants: toluene and ethanol. A mathematical model that includes the impacts of light intensity, initial contaminant concentration, catalyst thickness, and relative humidity (RH) on the degradation of organic contaminants in a photocatalytic reactor was developed to describe this process. The commercially available catalyst Degussa-PtTiO 2 was selected to compare with the MTU-PtTiO 2 -350 catalyst, which was synthesized by the sol-gel process, platinized, and calcined at 350°C. For toluene removal using the MTU-PtTiO 2 -350 catalyst, the degradation rate increased with increases in light intensity from 0.2 to 2.2 mW/cm 2 and in catalyst thickness from 0.00037 to 0.00361 cm. However, further increases in light intensity and catalyst thickness had only slight effect on the toluene degradation rate. Increasing the initial concentration from 6.29 to 127.9 g/L and the RH from 10 to 85% resulted in decreases in the toluene degradation rate. For ethanol removal using the MTU-PtTiO 2 -350 catalyst, the degradation rate increased more rapidly with an increase in RH from 17 to 56%; the RH had little effect on the ethanol degradation rate while it further increased from 56% to 82%. We discuss applicability of the model to estimate the influence of process variables and to evaluate photocatalyst performance.
Titanium dioxide with coupling agent (ETES) was applied as a photocatalyst for a synthesis of the TiO2/LDPE composite film. The physical properties of TiO2/LDPE composite film were analyzed by a Scanning Electron Microscope (SEM). TiO2 particles were impregnated into the polymer matrix film as a LDPE composite film. The results from the X-ray Diffraction (XRD) technique revealed that the structure of TiO2/LDPE composite film were anatase crystalline. The chemical structure of the TiO2/ LDPE composite films were analyzed by an ATR-Fourier transforms infrared (ATR-FTIR) spectrometer. Wavenumber of FTIR spectra at 719 cm1 indicated the Ti-O-Ti bond. Band gap energies of the films ranged from 3.19-3.29 eV. The photocatalytic activity of the film was tested for removal of gaseous acetone in a closed chamber. Experimental conditions were set as follows: a UV light intensity of approximately 2.7 mW.cm-2, flow rate of 2 L.min-1, and an initial acetone concentration of about 435±20 ppm. While the catalyst dosage was varied from 3% to 15% (wt. cat/wt. film).The degradation rate of acetone increased when increasing dosage of TiO2 from 3% to 10%, then decreased a little bit when increasing the dosage to 15%. The TiO2/LDPE composite film at the dosage of 10% yielded the highest removal efficiency of 75%, followed by the film at the dosage of 15%, 5%, and 3%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.