This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Resveratrol, a plant phenolic compound, has potential therapeutic benefits due to its antioxidant properties. This is substantiated by previous studies that show that resveratrol derived from rice grains is an effective treatment agent for metabolic syndrome. Here, we characterized the T-DNA sequence, inserted T-DNA structure, copy number, integrity of the transgene locus, resveratrol synthase gene expression and resveratrol contents in the grains of two resveratrol transgenic rice lines, Iksan515 and Iksan526. The T-DNA transformation vector contained two expression cassettes of the resveratrol synthase gene under the control of the ubiquitin promoter and the bar selection marker gene under the control of the CaMV35S promoter. Flanking sequence analysis indicated that the T-DNAs were inserted into intergenic regions of chromosome 4 for Iksan515 and chromosome 12 for Iksan526. Two T-DNAs connected in an inverted repeat structure at a single locus of the rice genome were identified by whole genome sequencing and Southern blot hybridization in both Iksan515 and Iksan526. No novel open reading frames (ORFs) around insertion sites, sequences encoding allergenic or toxic protein, or other unintended effects by T-DNA insertion were found in either case. In addition, resveratrol synthase gene expression in leaves and resveratrol detection in brown rice grains suggested the successful expression of the inserted foreign resveratrol synthase gene in two transgenic rice lines.