Background: Freezing of gait (FOG) is a common symptom in Parkinsons Disease (PD) patients. Previous studies have reported relationships between FOG, substantia nigra (SN) degeneration, dopamine transporter (DAT) concentration, as well as amyloid β deposition. However, there is a paucity of research on the concurrent impact of white matter damage.
Objectives: To assess the inter-relationships between these different co-morbidities, their impact on future FOG and whether they act independently of each other.
Methods: We used baseline MRI and longitudinal gait data from the Parkinson's Progression Markers Initiative (PPMI). We used deformation based morphometry (DBM) from T1-weighted MRI to measure SN atrophy, and segmentation of white matter hyperintensities (WMH) as a measure of WM pathological load. Putamen and caudate DAT levels from SPECT as well as cerebrospinal fluid (CSF) amyloid β were obtained directly from the PPMI. Following correlation analyses, we investigated whether WMH burden mediates the impact of amyloid β on future FOG.
Results: SN DBM, WMH load, putamen and caudate DAT activity and CSF amyloid β levels were significantly different between PD patients with and without future FOG (p < 0.008). Mediation analysis demonstrated an effect of CSF amyloid β levels on future FOG via WMH load, independent of SN atrophy and striatal DAT activity levels.
Conclusions: Amyloid β might impact future FOG in PD patients through an increase in WMH burden, in a pathway independent of Lewy body pathology.