The Bi-directional Reflectance Distribution (BRD) effect was caused by strong anisotropic reflectance of surface that was inevitable phenomenon for space-born Abstract : The Bidirectional Reflectance Distribution (BRD) effect is critical to interpret the surface information using remotely sensed data. This effect was caused by geometric relationship between sensor, target and solar that is inevitable effect for data of optical sensor. To remove the BRD effect, semi-empirical BRDF models are widely used. It is faster to calculate than physical models and demanded less observation than empirical models. In this study, Ross-Li kernel and Roujean kernel were used respectively in National Aeronautics and Space Administration (NASA) and European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) that are used to compare each other. The semi-empirical model consists of three parts which are isotropic, geometric and volumetric scattering. Each part contained physical kernel and empirical coefficients that were calculated by statistical method. Red and NIR channel of SPOT/ VEGETATION product were used to compute Nadir BRDF Adjusted Reflectance (NBAR) over East Asia area from January 2009 to December 2009. S1 product was provided by VITO that was conducted atmospheric correction using Simplified Method of Atmospheric Correction (SMAC). NBAR was calculated using corrected reflectance of red and NIR. Previous study has revealed that Roujean geometric kernel had unphysical values in large zenith angles. We extracted empirical coefficients in three parts and normalized reflectance to compare both BRDF models. Two points located forest in Korea peninsular and bare land in Gobi desert were selected for comparison. As results of time series analysis, both models showed similar reflectance change pattern and reasonable values. Whereas in case of empirical coefficients comparison, different changes pattern of values were showed in isotropic coefficients. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited ISSN 1225-6161 (Print) ISSN 2287-9307 (Online)