Applications of mobile robots are continuously capturing the importance in numerous areas such as agriculture, surveillance, defense, and planetary exploration to name a few. Accurate navigation of a mobile robot is highly significant for its uninterrupted operation. Simultaneous localization and mapping (SLAM) is one of the widely used techniques in mobile robots for localization and navigation. SLAM consists of front- and back-end processes, wherein the front-end includes SLAM sensors. These sensors play a significant role in acquiring accurate environmental information for further processing and mapping. Therefore, understanding the operational limits of the available SLAM sensors and data collection techniques from a single sensor or multisensors is noteworthy. In this article, a detailed literature review of widely used SLAM sensors such as acoustic sensor, RADAR, camera, Light Detection and Ranging (LiDAR), and RGB-D is provided. The performance of SLAM sensors is compared using an analytical hierarchy process (AHP) based on various key indicators such as accuracy, range, cost, working environment, and computational cost.