This article describes the manufacturing of a horn antenna using a 3D commercial printer. The horn antenna was chosen for its simplicity and practical versatility. The standardised horn antenna is one of the most widely used antennas in microwave technology. A standardised horn antenna can be connected to standardised waveguides. The horn antenna has been selected so that this antenna can be fabricated by 3D printing and thus obtain the equivalent of a standardised horn antenna. This 3D horn antenna can then be excited by a standardised waveguide. The 3Dprinted horn antenna with metallic layers has very good impedance characteristics, standing wave ratio and radiation patterns that are close to those of a standardised horn antenna. The 3D-based horn antenna is suitable for applications where low antenna weight is required, such as aerospace and satellite technologies. The article also describes a manufacturing procedure for a horn antenna (E-sector horn antenna) that is plated with galvanic layers of silver and gold. The design of the plated horn antenna in the Matlab application using the Antenna Toolbox extension is also described, including 3D printing procedures, post-processing procedures (plating) and practical testing of its functionality. The measured results are compared to simulations of the standardised horn antenna and then analysed.
This article describes the effect of high-power electromagnetic environments (HPEMs) on the operation of all basic elements of electrical power networks. Frequency bands are defined for the HPEM environments. Attention is focused particularly on directed energy weapons (DEWs) and intentional electromagnetic interference (IEMI). A classification of DEW and IEMI generators in terms of E-field level and target distance from the DEW or IEMI generator antenna aperture is also described. The main focus of this article is on the design and testing of a low-tech DEW generator used to determine the electromagnetic immunity of standard electronic circuits. In addition, verification of electromagnetic immunity for a simple electronic circuit without adequate protection against the E-field is also explained. The outcome of this article is the determination of the E-field limits for fault-free operation, for malfunctioning states of the tested circuits and for irreversible destruction of the circuits. The measured E-field was compared to basic microwave radiation theory and to simulation results in COMSOL Multiphysics software (COMSOL, Inc. 100 District Avenue Burlington, MA 01803 USA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.