Abstract:The stability of underground openings is pivotal to sustainable safe mining in underground coal mines. To determine the stability and tunneling safety issues in 800-m-deep underground openings through large fault zones in argillaceous rocks in the Guqiao Coal Mine in East China, the pilot industrial test, laboratory experimentation, and field measurements were used to analyze the large deformations and failure characteristics of the surrounding rock, the influence factors of safe excavation and stability of underground openings, and to study the stability control countermeasures. The main factors influencing the stability and tunneling safety include large fault zones, high in situ stress, poor mechanical properties and engineering performance of the argillaceous rock mass, groundwater inrush and gas outburst. According to the field study, the anchor-ability of cables and the groutability of cement-matrix materials in the argillaceous rock in the large fault zones were extremely poor, and deformations and failure of the surrounding rock were characterized by dramatic initial deformation, high long-term creep rate, obviously asymmetric deformations and failure, rebound of roof displacements, overall loosened deformations of deep surrounding rock on a large scale, and high sensitivity to engineering disturbance and water immersion. Various geo-hazards occurred during the pilot excavation, including roof collapse, groundwater inrush, and debris flow. Control techniques are proposed and should be adopted to ensure tunneling safety and to control the stability of deep underground openings through large fault zones, including regional strata reinforcement technique such as ground surface pre-grouting, primary enhanced control measures, floor grouting reinforcement technique, and secondary enclosed support measures for long-term stability, which are critical for ensuring the sustainable development of the coal mine.