Iron (Fe) homeostasis is essential for plant growth and development. Although tremendous progress has been made in understanding the maintenance of Fe homeostasis in plants, the underlying molecular mechanisms remain elusive. Recently, bHLH11 was reported to function as a negative regulator. However, the molecular mechanism by which bHLH11 regulates Fe homeostasis is unclear. Here, we generated two bhlh11 loss-of-function mutants which displayed the enhanced sensitivity to excessive Fe. bHLH11 is located in the cytoplasm and nucleus due to lack of a nuclear location signal sequence, and its interaction partners, bHLH IVc transcription factors (TFs) (bHLH34, bHLH104, bHLH105 and bHLH115) facilitate its nuclear accumulation. bHLH11 exerts its negative regulation function by recruiting the corepressors TOPLESS/TOPLESS-RELATED. Moreover, bHLH11 antagonizes the transactivity of bHLH IVc TFs towards bHLH Ib genes (bHLH38, bHLH39, bHLH100 and bHLH101). This work indicates that bHLH11 is a crucial component of Fe homeostasis signaling network, playing a pivotal role in the fine-tuning of Fe homeostasis.