Ubiquitination is one of several post-transcriptional modifications of histone 2B (H2B) which affect the chromatin structure and, hence, influence gene transcription. This study focuses on Alternaria alternata, a fungal pathogen responsible for leaf spot in many plant species. The experiments show that the product of AaBRE1, a gene which encodes H2B monoubiquitination E3 ligase, regulates hyphal growth, conidial formation and pathogenicity. Knockout of AaBRE1 by the homologous recombination strategy leads to the loss of H2B monoubiquitination (H2Bub1), as well as a remarkable decrease in the enrichment of trimethylated lysine 4 on histone 3 (H3K4me3). RNA sequencing assays elucidated that the transcription of genes encoding certain C2H2 zinc-finger family transcription factors, cell wall-degrading enzymes and chitin-binding proteins was suppressed in the AaBRE1 knockout cells. GO enrichment analysis showed that these proteins encoded by the set of genes differentially transcribed between the deletion mutant and wild type were enriched in the functional categories “macramolecular complex”, “cellular metabolic process”, etc. A major conclusion was that the AaBRE1 product, through its effect on histone 2B monoubiquitination and histone 3 lysine 4 trimethylation, makes an important contribution to the fungus’s hyphal growth, conidial formation and pathogenicity.