We present 197 planet candidates discovered using data from the first year of the NASA K2 mission (Campaigns 0-4), along with the results of an intensive program of photometric analyses, stellar spectroscopy, high-resolution imaging, and statistical validation. We distill these candidates into sets of 104 validated planets (57 in multi-planet systems), 30 false positives, and 63 remaining candidates. Our validated systems span a range of properties, with median values of R P = 2.3 R ⊕ , P = 8.6 d, T eff = 5300 K, and Kp = 12.7 mag. Stellar spectroscopy provides precise stellar and planetary parameters for most of these systems. We show that K2 has increased by 30% the number of small planets known to orbit moderately bright stars (1-4 R ⊕ , Kp = 9-13 mag). Of particular interest are 37 planets smaller than 2 R ⊕ , 15 orbiting stars brighter than Kp = 11.5 mag, five receiving Earth-like irradiation levels, and several multi-planet systems -including four planets orbiting the M dwarf K2-72 near mean-motion resonances. By quantifying the likelihood that each candidate is a planet we demonstrate that our candidate sample has an overall false positive rate of 15 − 30%, with rates substantially lower for small candidates (< 2R ⊕ ) and larger for candidates with radii > 8R ⊕ and/or with P < 3 d. Extrapolation of the current planetary yield suggests that K2 will discover between 500 − 1000 planets in its planned four-year mission -assuming sufficient follow-up resources are available. Efficient observing and analysis, together with an organized and coherent follow-up strategy, is essential to maximize the efficacy of planet-validation efforts for K2 , TESS , and future large-scale surveys. 1 We distinguish "confirmed" systems (with measured masses) from "validated" systems (whose planetary nature has been statistically demonstrated, e.g. with false positive probability < 1% ).