Metrics & MoreArticle Recommendations
CONSPECTUS:The interaction between light and multichromophoric assemblies (MCAs) is the primary event of many fundamental processes, from photosynthesis to organic photovoltaics, and it triggers dynamical processes that share remarkable similarities at the molecular scale: light absorption, energy and charge transfer, internal conversions, emission, and so on. Those events often involve many chromophores and different excited electronic states that are coupled on an ultrafast time scale. This Account aims to discuss some of the chemical physical effects ruling these processes, a fundamental step toward their control, based on our experience on nucleic acids.In the last 15 years, we have, indeed, studied the photophysics and photochemistry of DNA and its components. By combining different quantum mechanical methods, we investigated the molecular processes responsible for the damage of the genetic code or, on the contrary, those preventing it by dissipating the excess energy deposited in the system by UV absorption. Independently of its fundamental biological role, DNA, with its fluctuating closely stacked bases stabilized by weak nonbonding interactions, can be considered a prototypical MCA. Therefore, it allows one to tackle within a single system many of the conceptual and methodological challenges involved in the study of photoinduced processes in MCA.In this Account, by using the outcome of our studies on oligonucleotides as a guideline, we thus highlight the most critical modellistic issues to be faced when studying, either experimentally or computationally, the interaction between UV light and DNA and, at the same time, bring out their general relevance for the study of MCAs.We first discuss the rich photoactivated dynamics of nucleobases (the chromophores), highlighting the main effects modulating the interplay between their excited states and how the latter can affect the photoactivated dynamics of the polynucleotides, either providing effective monomer-like nonradiative decay routes or triggering reactive processes (e.g., triplet generation).We then tackle the reaction paths involving multiple bases, showing that in the DNA duplex the most important ones involve two stacked bases, forming a neutral excimer or a charge transfer (CT) state, which exhibit different spectral signatures and photochemical reactivity. In particular, we analyze the factors affecting the dynamic equilibrium between the excimer and CT, such as the fluctuations of the backbone or the rearrangement of the solvent. Next, we highlight the importance of the effects not directly connected to the chromophores, such as the flexibility of the backbone or the solvent effect. The former, affecting the stacking geometry of the bases, can determine the preference between different deactivation paths. The latter is particularly influential for CT states, making very important an accurate treatment of dynamical solvation effects, involving both the solvent bulk and specific solute−solvent interactions.In the ...