Abstract:The identification of climatic relicts is seldom straightforward. These species are threatened owing to current climatic trends, which underlines the importance of carrying out ecological and biogeographic investigations of them. Here we introduce a novel approach to improve the identification of climatic relicts. We are focusing on thermophilic relict plants of the Pannonian biogeographic region from the Holocene Thermal Maximum (HTM). We argue that a minimal mean annual temperature difference (MATD) of the HTM compared to the recent climate allowed a continuous northward expansion for the taxa investigated. We measured latitudinal distances between the recent occurrences of relicts and those of the main distribution found further south. Regarding estimates for MATD (1.0-2.5 • C), we only consider species with a distribution which has a 150-350 km North-South gap, since a latitudinally directed distance can be translated into temperature, showing a poleward cooling trend. Of the 15 selected species, 12 were recorded with values of 1.0-1.7 • C MATD, and three with values of 1.8-2.5 • C, some of which are presumably interglacial species. Woody species are over-represented among them (four species), using the Hungarian flora as a reference. The proposed method allows the prediction of potential climate-related changes in the future distribution of species, constrained by the topographic features of their habitats.