Abstract. In Switzerland, floods, debris flows, landslides and rockfalls cause damage every year affecting property values, infrastructure, forestry and agriculture. As population and settled areas have increased, the damage potential has also become greater. Information about natural hazard events that caused any damage is needed for hazard mapping and further decision making. This is why the Swiss Federal Research Institute WSL has been systematically collecting information on flood and mass movement damage in a database since 1972. The estimated direct financial damage as well as fatalities and injured people have been documented using press articles as the main source of information. The database can provide answers to questions related to the temporal and spatial distribution of damage, natural hazard processes and the corresponding weather conditions. This study describes the data collection methods used and the key analyses of data from 1972 to 2007. Furthermore, the benefits and drawbacks of the database are discussed. In Switzerland, naturally triggered floods, debris flows, landslides and rockfalls have caused financial damage amounting to nearly 8000 million Euros in total within the last 36 years (taking inflation into account). These processes have mainly affected pre-and central alpine regions and their total costs of damage are dominated by a few major events. Nearly one quarter of the costs result from August 2005 when large parts of Northern Switzerland were affected by flooding. We must assume that major events like this are not unique and that similar events will occur again in future.
Pine mistletoe (Viscum album ssp. austriacum) is common in natural Scots pine (Pinus sylvestris L.) forests in the alpine Rhone Valley, Switzerland. This semi-parasite, which is regarded as an indicator species for temperature, increases the drought stress on trees and may contribute to the observed pine decline in the region. We recorded mistletoes on representative plots of the Swiss National Forest Inventory ranging from 450 to 1,550 m a.s.l. We found mistletoe on 37% of the trees and on 56% of all plots. Trees infested with mistletoe had a significantly higher mortality rate than non-infested trees. We compared the current mistletoe occurrence with records from a survey in 1910. The current upper limit, 1,250 m, is roughly 200 m above the limit of 1,000-1,100 m found in the earlier survey 100 years ago. Applying a spatial model to meteorological data we obtained monthly mean temperatures for all sites. In a logistic regression mean winter temperature, pine proportion and geographic exposition significantly explained mistletoe occurrence. Using mean monthly January and July temperatures for 1961-1990, we calculated Skre's plant respiration equivalent (RE) and regressed it against elevation to obtain the RE value at the current mistletoe elevation limit. We used this RE value and temperature from 1870-1899 in the regression and found the past elevation limit to be at 1,060 m, agreeing with the 1910 survey. For the predicted temperature rise by 2030, the limit for mistletoe would increase above 1,600 m altitude.
IFKIS-Hydro is an information and warning system for hydrological hazards in small-and medium-scale catchments. The system collects data such as weather forecasts, precipitation measurements, water level gauges, discharge simulations and local observations of event-specific phenomena. In addition, IFKIS-Hydro incorporates a web-based information platform, which serves as a central hub for the submission and overview of data. Special emphasis is given to local information. This is accomplished particularly by human observers. In medium-scale catchments, discharge forecast models have an increasing importance in providing valuable information. IFKIS-Hydro was developed in several test regions in Switzerland and the first results of its application are available now. The system is constantly extended to additional regions and may become the standard for warning systems in smaller catchments in Switzerland.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.