This research examined the potential for utilizing waste materials generated during the production of dishes/meals and organic waste. Specifically, it evaluated the use of orange peel (OP), spent coffee grounds (SCG), and waste cooking oil in the production of soaps. For the purposes of this study, homemade soaps were made from used food oils using the cold saponification method using sodium hydroxide. During the soap preparation, spent coffee grounds and orange peel were added to the samples in increasing concentrations of 1%, 2.5%, and 5%. The quality of the individual types of homemade soaps was evaluated on the basis of physicochemical properties such as pH, moisture, total alkalinity, total fatty matter, malondialdehyde content, fat content, foaminess, and hardness. All soaps produced using the cooking oil met the ISO quality criteria and reveal a high TFM content, low moisture content, and also very good foam stability and satisfactory foaming stability. However, no relationship was observed between the use of OP and SCG in soap production and these parameters. However, according to the ABTS test, OP and SCG significantly contributed to the antioxidant properties of the soaps, while SCG-impregnated soaps performed slightly better in this respect. Soaps with SCG also had the highest levels of flavonoids. On the other hand, the fillers used for the soap formulation reduced their hardness. All soaps showed 100% solubility in water, thus confirming the biodegradability of the product. This study demonstrated the novel potential of incorporating waste products like orange peel, spent coffee grounds, and waste cooking oil into homemade soaps, highlighting their contributions to its antioxidant properties and water solubility while ensuring high quality standards.