2018
DOI: 10.15640/jcsit.v6n1a4
|View full text |Cite
|
Sign up to set email alerts
|

The Use of Data Mining Applied In the Accounts Receivable from the Employees of a Government Institution in México

Abstract: In this research we discussed the application of data mining in financial information, focusing on accounts receivable of the employees of a government office, we applied visual data mining in (993) accounting records using WEKA to identify outliers by geographical region, the frequency and the amount of money missing in a period of time, and analyzed the main factors involved in this process. Our preliminary results show that the insecurity in the region is highly correlated with the amount of money missing i… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 3 publications
0
0
0
1
Order By: Relevance
“…Banyak penelitian yang sudah dilakukan terkait prediksi jatuh tempo invoice seperti prediksi piutang karyawan (Aguilar et al, 2018), prediksi pembayaran invoice dengan menggunakan 5 algoritma ML yaitu Naive Bayes, LR, k-Nearest Neighbor, Random Forest dan Decision Trees (Appel et al, 2019), Bahrami menggunakan algoritma LR, SVM dan OneR untuk memprediksi pembayaran invoice (Bahrami et al, 2020), prediksi kelancaran pembayaran (Irawan & Samopa, 2019), segmentsi dan klasifikasi kebiasan pembayaran customer (Moedjiono et al, 2016), prediksi pembayaran piutang customer dengan AdaBoost (Shah, 2019)…”
Section: Pendahuluanunclassified
“…Banyak penelitian yang sudah dilakukan terkait prediksi jatuh tempo invoice seperti prediksi piutang karyawan (Aguilar et al, 2018), prediksi pembayaran invoice dengan menggunakan 5 algoritma ML yaitu Naive Bayes, LR, k-Nearest Neighbor, Random Forest dan Decision Trees (Appel et al, 2019), Bahrami menggunakan algoritma LR, SVM dan OneR untuk memprediksi pembayaran invoice (Bahrami et al, 2020), prediksi kelancaran pembayaran (Irawan & Samopa, 2019), segmentsi dan klasifikasi kebiasan pembayaran customer (Moedjiono et al, 2016), prediksi pembayaran piutang customer dengan AdaBoost (Shah, 2019)…”
Section: Pendahuluanunclassified