Background: Although hyperspectral imaging was originally introduced for military, remote sensing, and astrophysics applications, the use of analytical hyperspectral imaging techniques has been expanded to include monitoring of agricultural crops and commodities due to the broad range and highly specific and sensitive spectral information that can be acquired. Combining hyperspectral imaging with remote sensing expands the range of targets that can be analyzed. Results: Hyperspectral imaging technology can rapidly provide data suitable for monitoring a wide range of plant conditions such as plant stress, nitrogen status, infections, maturity index, and weed discrimination very rapidly, and its use in remote sensing allows for fast spatial coverage. Conclusions: This paper reviews current research on and potential applications of hyperspectral imaging and remote sensing for outdoor field monitoring of agricultural crops. The instrumentation and the fundamental concepts and approaches of hyperspectral imaging and remote sensing for agriculture are presented, along with more recent developments in agricultural monitoring applications. Also discussed are the challenges and limitations of outdoor applications of hyperspectral imaging technology such as illumination conditions and variations due to leaf and plant orientation.