2021
DOI: 10.1007/s10722-021-01226-0
|View full text |Cite
|
Sign up to set email alerts
|

The use of machine learning methods in classification of pumpkin seeds (Cucurbita pepo L.)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
11
0
8

Year Published

2022
2022
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 35 publications
(19 citation statements)
references
References 28 publications
0
11
0
8
Order By: Relevance
“…Four different classification models were built using Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) [ 38 , 39 , 40 ], and CatBoost; the models were parameterized using empirical settings, as shown in Table 7 . To ensure the reliability of the experimental results and to avoid the chance of single experimental results, several experiments were conducted on different models.…”
Section: Resultsmentioning
confidence: 99%
“…Four different classification models were built using Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF) [ 38 , 39 , 40 ], and CatBoost; the models were parameterized using empirical settings, as shown in Table 7 . To ensure the reliability of the experimental results and to avoid the chance of single experimental results, several experiments were conducted on different models.…”
Section: Resultsmentioning
confidence: 99%
“…Matrix of confusion generated using data of validation of the LDA model. 1 1 = Orelha-de-Vó; 2 = Fava-Rajada-Preta; 3 = Espírito-Santo-Vermelho; 4 = Espírito-Santo-Marrom; 5 = Fava-Rajada; 6 = Fava-Amarela; 7 = Mulatinha; 8 = Fígado-de-Frango; 9 = Fava-Manteiga; 10 = Fava-S. Koklu, Sarigil and Ozbek (2021) used a confusion matrix to show the success of a model used for classification of pumpkin (Cucurbita pepo L.) seeds. In addition, Altuntas, Comert and Kocamaz (2019) used the same classification to predict the performance of CNN models on the identification of haploid and diploid maize seeds.…”
Section: Resultsmentioning
confidence: 99%
“…Köklü ve arkadaşlarının (2021) yaptıkları çalışmada, kabak çekirdeklerini sınıflandırılması için makine öğrenmesi yöntemlerinden LR, DVM, ROF ve KNN algoritmalarını kullanmışlardır. Deneysel değerlendirmelerin sonucunda en iyi başarının DVM yöntemi ile olduğunu bildirmişlerdir [32]. Bu çalışmada, Türkiye'de elde edilmiş Besni ve Keçimen cinsi kuru üzümleri sınıflandırılması için hibrit yığınlanmış oto kodlayıcı (YOK) ve rotasyon orman (RO) algoritmasının (YOK-RO) önerilmektedir.…”
Section: Introductionunclassified