The Joint Photographic Experts Group (JPEG) standard format is one of the most widely used in image compression technologies. More recently, JPEG2000 format has emerged as a state-of-the-art technology that provides substantial improvements in picture quality at higher compression ratios. However, there has been no attempt to date to determine which of the two compression formats produces less variability in the automated evaluation of immunohistochemically stained digital images in agreement with their compression rates and complexity degrees. The evaluation of Ki67 and FOXP3 immunohistochemical nuclear markers was performed in a total of 329 digital images: 47 were captured in uncompressed Tagged Image File Format (TIFF), 141 were converted to three JPEG compressed formats (47 each with 1:3, 1:23 and 1:46 compression) and 141 were converted to three JPEG2000 compressed formats (47 each with 1:3, 1:23 and 1:46 compression). The count differences between images in TIFF versus JPEG formats were compared with those obtained between images in TIFF versus JPEG2000 formats at the three levels of compression. It was found that, using JPEG2000 compression, the results of the stained nuclei count are close enough to the results obtained with uncompressed images, especially in highly complex images at minimum and medium compression. Otherwise, in images of low complexity, JPEG and JPEG2000 had similar count efficiency to that of the original TIFF images at all compression levels. These data suggest that JPEG2000 could give rise to an efficient means of storage, reducing file size and storage capacity, without compromise on the immunohistochemical analytical quality.