Premature ventricular contraction (PVC) is one of the most common arrhythmias, originating from ectopic beats in the ventricles. Precision in localizing the origin of PVCs has long been a focal point in electrophysiology research. Machine learning (ML) has developed rapidly in the past two decades with increasingly widespread applications. With the increase of clinical data such as electrocardiograms (ECGs), computed tomography (CT), and magnetic resonance imaging (MRI), ML and its subfields, deep learning (DL), have become powerful analytical tools, playing an increasingly important role in electrophysiological research. In this review, we mainly provide an overview of the development of ML in the localization of PVC origins, including its applications, advantages, disadvantages, and future research directions. This information is intended to serve as a reference for clinicians and researchers, aiding them in better‐utilizing ML techniques for the diagnosis and study of PVC origins.