A swarm parameter experiment is introduced, which implements the pulsed Townsend (PT) electrical method with a high degree of automatization. The experimental setup and measurement procedures are described in detail, and a comprehensive definition of the swarm model is given and used for signal analysis. The intrinsic parameters of electron drift currents in the PT method are identified, and novel regression methods are presented for obtaining electron swarm parameters from PT measurements. The setup and methods are verified with measurements in Ar, N 2 and CO 2 , which are focused on the (E/N)-range between dominating electron attachment and weakly dominating ionization. The present data are compared with experimental reference data, and to electron transport coefficients calculated by a Boltzmann solver and simulated by a Monte Carlo method. Excellent agreement was found between the present data and the Monte Carlo results, but there are significant discrepancies to widely used recommended swarm parameters of N 2 and CO 2. Finally, it is proposed to revise some hitherto recommended values of electron transport coefficients.