Laplacian energy (zero Neumann boundary conditions) planar Hessian energyStein et al. [2018] our Hessian energy Fig. 1. Solving an interpolation problem on an airplane. Using the Laplacian energy with zero Neumann boundary conditions (left) distorts the result near the windows and the cockpit of the plane: the isolines bend so they can be perpendicular to the boundary. The planar Hessian energy of Stein et al. [2018] (center)is unaffected by the holes, but does not account for curvature correctly, leading to unnatural spacing of isolines at the front and back of the fuselage. Our Hessian energy (right) produces a natural-looking result with more regularly spread isolines, unaffected by the boundary.Current quadratic smoothness energies for curved surfaces either exhibit distortions near the boundary due to zero Neumann boundary conditions, or they do not correctly account for intrinsic curvature, which leads to unnatural-looking behavior away from the boundary. This leads to an unfortunate trade-off: one can either have natural behavior in the interior, or a distortion-free result at the boundary, but not both. We introduce a generalized Hessian energy for curved surfaces, expressed in terms of the covariant one-form Dirichlet energy, the Gaussian curvature, and the exterior derivative. Energy minimizers solve the Laplace-Beltrami biharmonic equation, correctly accounting for intrinsic curvature, leading to natural-looking isolines. On the boundary, minimizers are as-linear-as-possible, which reduces the distortion of isolines at the boundary. We discretize the covariant one-form Dirichlet energy using Crouzeix-Raviart finite elements, arriving at a discrete formulation of the Hessian energy for applications on curved surfaces. We observe convergence of the discretization in our experiments.