The discrete Laplace‐Beltrami operator for surface meshes is a fundamental building block for many (if not most) geometry processing algorithms. While Laplacians on triangle meshes have been researched intensively, yielding the cotangent discretization as the de‐facto standard, the case of general polygon meshes has received much less attention. We present a discretization of the Laplace operator which is consistent with its expression as the composition of divergence and gradient operators, and is applicable to general polygon meshes, including meshes with non‐convex, and even non‐planar, faces. By virtually inserting a carefully placed point we implicitly refine each polygon into a triangle fan, but then hide the refinement within the matrix assembly. The resulting operator generalizes the cotangent Laplacian, inherits its advantages, and is empirically shown to be on par or even better than the recent polygon Laplacian of Alexa and Wardetzky [AW11] — while being simpler to compute.
Figure 1: To fabricate a mesh, possibly acquired by laser scanning, in a molding process, we automatically decompose and deform the shape (center left). A reusable multi-piece mold for the object can be produced by CNC milling (center right). Physical copies can be fabricated by mold casting in different materials like resin or plaster (right). AbstractWe consider the problem of manufacturing free-form geometry with classical manufacturing techniques, such as mold casting or 3-axis milling. We determine a set of constraints that are necessary for manufacturability and then decompose and, if necessary, deform the shape to satisfy the constraints per segment. We show that many objects can be generated from a small number of (mold-)pieces if slight deformations are acceptable. We provide examples of actual molds and the resulting manufactured objects.
Computing solutions to linear systems is a fundamental building block of many geometry processing algorithms. In many cases the Cholesky factorization of the system matrix is computed to subsequently solve the system, possibly for many right-hand sides, using forward and back substitution. We demonstrate how to exploit sparsity in both the right-hand side and the set of desired solution values to obtain significant speedups. The method is easy to implement and potentially useful in any scenarios where linear problems have to be solved locally. We show that this technique is useful for geometry processing operations, in particular we consider the solution of diffusion problems. All problems profit significantly from sparse computations in terms of runtime, which we demonstrate by providing timings for a set of numerical experiments.
We present an automatic tool to approximate curved geometries with piece-wise developable surfaces. At the center of our work is an algorithm that wraps a given 3D input surface with multiple developable patches, each modeled as a discrete orthogonal geodesic net. Our algorithm features a global optimization routine for effectively finding the placement of the developable patches. After wrapping the mesh, we use these patches and a non-linear projection step to generate a surface that approximates the original input, but is also amendable to simple and efficient fabrication techniques thanks to being piecewise developable. Our algorithm allows users to steer the trade-off between approximation power and the number of developable patches used. We demonstrate the effectiveness of our approach on a range of 3D shapes. Compared to previous approaches, our results exhibit a smaller or comparable error with fewer patches to fabricate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.