The discrete Laplace‐Beltrami operator for surface meshes is a fundamental building block for many (if not most) geometry processing algorithms. While Laplacians on triangle meshes have been researched intensively, yielding the cotangent discretization as the de‐facto standard, the case of general polygon meshes has received much less attention. We present a discretization of the Laplace operator which is consistent with its expression as the composition of divergence and gradient operators, and is applicable to general polygon meshes, including meshes with non‐convex, and even non‐planar, faces. By virtually inserting a carefully placed point we implicitly refine each polygon into a triangle fan, but then hide the refinement within the matrix assembly. The resulting operator generalizes the cotangent Laplacian, inherits its advantages, and is empirically shown to be on par or even better than the recent polygon Laplacian of Alexa and Wardetzky [AW11] — while being simpler to compute.
We introduce a construction for discrete gradient operators that can be directly applied to arbitrary polygonal surface as well as polyhedral volume meshes. The main idea is to associate the gradient of functions defined at vertices of the mesh with diamonds: the region spanned by a dual edge together with its corresponding primal element — an edge for surface meshes and a face for volumetric meshes. We call the operator resulting from taking the divergence of the gradient Diamond Laplacian. Additional vertices used for the construction are represented as affine combinations of the original vertices, so that the Laplacian operator maps from values at vertices to values at vertices, as is common in geometry processing applications. The construction is local, exactly the same for all types of meshes, and results in a symmetric negative definite operator with linear precision. We show that the accuracy of the Diamond Laplacian is similar or better compared to other discretizations. The greater versatility and generally good behavior come at the expense of an increase in the number of non‐zero coefficients that depends on the degree of the mesh elements.
Solving partial differential equations (PDEs) on geometric domains is an important component of computer graphics, geometry processing, and many other fields. Typically, the given discrete mesh is the geometric representation and should not be altered for simulation purposes. Hence, accurately solving PDEs on general meshes is a central goal and has been considered for various differential operators over the last years. While it is known that using higher-order basis functions on simplicial meshes can substantially improve accuracy and convergence, extending these benefits to general surface or volume tessellations in an efficient fashion remains an open problem. Our work proposes variationally optimized piecewise quadratic shape functions for polygons and polyhedra, which generalize quadratic P 2 elements, exactly reproduce them on simplices, and inherit their beneficial numerical properties. To mitigate the associated cost of increased computation time, particularly for volumetric meshes, we introduce a custom two-level multigrid solver which significantly improves computational performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.