H. TEITEI~BAUM. Can. J . Chem. 61, 1253Chem. 61, (1983 Rate laws for the evolution of vibrational energy level populations are derived when the Bcthe-Tcller law is obeyed. It is assumcd that a Boltzmann distribution is maintained via rapid V-V proccsscs. A variety of different rate laws result depending on the size and direction of the perturbation, the extent from equilibrium, and how classical the oscillator is at the initial and final conditions. An earlier analysis by Breshears is shown to be a special case. A prescription is givcn for procedures to compare relaxation times obtained from shock tube experiments and from lascr-induced tluorescence experiments, when T-V energy transfer processes are rate-determining. Corrections for thermal effects are included. Shock tube, fluorescence, and chemical activation expcrimcnts are proposed which provide meaningful conditions for testing the Bethe-Teller law and for testing the existence of a Boltzmann distribution.H. TEITELBAUM. Can. J. Chem. 61, 1253Chem. 61, (1983. On a dkduit les lois de vitesse de I'dvolution des populations du niveau d'dnergic vibrationnel lorsquc la loi de Bethe-Teller se vkrifie. On pense que la distribution de Boltzmann est maintenue par l'intermkdiaire d'un processus rapide du type V-V. 11 en rdsulte diverses lois de vitesse suivant l'amplitude et le sens de la perturbation suivant la position par rapport a I'dquilibre et suivant le comportement classique ou non de I'oscillateur dans les conditions initinles et finales. On montre qu'une analyse anterieure de Breshears n'est qu'un cas special. On dCcrit la f a~o n de proceder pour comparer les temps de relaxation obtenus Introduction In an earlier study Breshears showed that the nature and extent of the departure from equilibrium determines the relative relaxation rates of vibrational level populations ( I ) . In particular, the fluorescent intensities froin vibrational levels v decay with rate coefficients proportional to v, whereas all vibrational levels in shock wave experiments decay with the same rate coefficient. These results were shown to be natural consequences of the existence of a Boltzmann vibrational distribution and a corresponding temperature Tvib within a single mode of a harmonic oscillator. Although not clearly stated, they are also a consequence of the vibrational levels subsequently exchanging energy eVib with translational energy according to the Bethe-Teller law (2) where ET is the statistical-thermodynamic vibrational energy at the translational temperature T (which in principle also varies with time).