We prove the unitary equivalence of the inverse of the Krein-von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, S ≥ εIH for some ε > 0 in a Hilbert space H to an abstract buckling problem operator.In the concrete case wheren an open, bounded (and sufficiently regular) domain, this recovers, as a particular case of a general result due to G. Grubb, that the eigenvalue problem for the Krein Laplacian SK (i.e., the Krein-von Neumann extension of S),is in one-to-one correspondence with the problem of the buckling of a clamped plate,where u and v are related via the pair of formulaswith SF the Friedrichs extension of S. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.).