DNA interstrand crosslinks (ICLs) are complex lesions that covalently link both strands of the DNA double helix and impede essential cellular processes such as DNA replication and transcription. Recent studies suggest that multiple repair pathways are involved in their removal. Elegant genetic analysis has demonstrated that at least three distinct sets of pathways cooperate in the repair and/or bypass of ICLs in budding yeast. Although the mechanisms of ICL repair in mammals appear similar to those in yeast, important differences have been documented. In addition, mammalian crosslink repair requires other repair factors, such as the Fanconi anemia proteins, whose functions are poorly understood. Because many of these proteins are conserved in simpler metazoans, nonmammalian models have become attractive systems for studying the function(s) of key crosslink repair factors. This review discusses the contributions that various model organisms have made to the field of ICL repair. Specifically, it highlights how studies performed with C. elegans, Drosophila, Xenopus, and the social amoeba Dictyostelium serve to complement those from bacteria, yeast, and mammals. Together, these investigations have revealed that although the underlying themes of ICL repair are largely conserved, the complement of DNA repair proteins utilized and the ways in which each of the proteins is used can vary substantially between different organisms.