SUMMARY
Combined‐cycle power plants are currently preferred for new power generation plants worldwide. The performance of gas‐turbine engines can be enhanced at constant turbine inlet temperatures with the addition of a bottoming waste‐heat recovery cycle. This paper presents a study on the energy and exergy analysis of a novel hybrid Combined‐Nuclear Power Plant (HCNPP). It is thus interesting to evaluate the possibility of integrating the gas turbine with nuclear power plant of such a system, utilizing virtually free heat. The integration arrangement of the AP600 NPP steam cycle with gas turbines from basic thermodynamic considerations will be described. The AP600 steam cycle modifications to combine with the gas turbines can be applied to other types of NPP. A simple modeling of Alstom gas turbines cycle, one of the major combined‐cycle steam turbines manufacturers, hybridized with a nuclear power plant from energetic and exergetic viewpoint is provided. The Heat Recovery Steam Generator (HRSG) has single steam pressure without reheat, one superheater and one economizer. The thermodynamic parameters of the working fluids of both the gas and the steam turbines cycles are analyzed by modeling the thermodynamic cycle using the Engineering Equation Solver (EES) software. In case of hybridizing, the existing Alstom gas turbine with a pressurized water nuclear power plants using the newly proposed novel solution, we can increase the electricity output and efficiency significantly. If we convert a traditional combined cycle to HCNPP unit, we can achieve about 20% increase in electricity output. This figure emphasizes the significance of restructuring our power plant technology and exploring a wider variety of HCNPP solutions. Copyright © 2011 John Wiley & Sons, Ltd.