The research aims to make an intelligent agent that can compete against the human player. In this research, the feasible greedy strategy is proposed to make an intelligent agent by checking all possible solutions in the limited tree levels to find effective movement. Several matches are conducted to evaluate the performance of the feasible greedy agent. The board size for the evaluation consists of 33, 44, 55, 66, 77, and 88 squares. From the result, the feasible greedy agent never loses against the random agent and the pure greedy agent. In 3 3 squares match, the agent can compensate against the human player, so the game always ends with a draw. In 44, 55, 66, 77, and 88 squares matches, the feasible greedy agent slightly outplays the human player.