Due to the boom in technical compute in the last few years, the world has seen massive advances in artificially intelligent systems solving diverse real-world problems. But a major roadblock in the ubiquitous acceptance of these models is their enormous computational complexity and memory footprint. Hence efficient architectures and training techniques are required for deployment on extremely low resource inference endpoints. This paper proposes an architecture for detection of alphabets in American Sign Language on an ARM Cortex-M7 microcontroller having just 496 KB of framebuffer RAM. Leveraging parameter quantization is a common technique that might cause varying drops in test accuracy. This paper proposes using interpolation as augmentation amongst other techniques as an efficient method of reducing this drop, which also helps the model generalize well to previously unseen noisy data. The proposed model is about 185 KB postquantization and inference speed is 20 frames per second.
The COVID-19 pandemic serves as a grim reminder of the unexpected nature of these outbreaks and gives rise to a unique set of research challenges in a variety of fields. As people all over the world adjust to this new 'normal', with most workplaces, from companies to educational institutions shifting online, enormous surges in the transmission of images and videos have been observed, creating record-breaking stresses on the internet backbone. At the same time, maintaining the privacy and security of the users' data is of immense importance, this is where fast and efficient image encryption algorithms play a vital role. This paper discusses the calamitous effects of the pandemic on the world population and how their changes in multimedia consumption have led to an urgent need for the development and deployment of secure and fast image encryption, especially selective image encryption techniques. It carefully surveys the most recent advances in this field, discusses their real-world effects and finally explores some future research avenues, to provide swift relief and recover from the disastrous effects of the pandemic.
In the digital age, the Internet has enabled the circulation of ideas and information and, in turn, has increased awareness among people. However, this does not come with its drawbacks. With the proliferation of online platforms, hoaxers can easily lure people towards their propagandist views or false news. The need to root out such false information and hate speech during this COVID-19 pandemic has never been more essential. The following study presents a survey of various papers that attempt to tackle similar problem statements with fake news, sentiment classification, and topic extraction. The paper focuses on how existing quality research can help improve the current state of research on COVID-19 related datasets by guiding researchers towards valuable procedures to help governmental authorities combat the rise in the spread of false news and malicious and hate comments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.