Due to the boom in technical compute in the last few years, the world has seen massive advances in artificially intelligent systems solving diverse real-world problems. But a major roadblock in the ubiquitous acceptance of these models is their enormous computational complexity and memory footprint. Hence efficient architectures and training techniques are required for deployment on extremely low resource inference endpoints. This paper proposes an architecture for detection of alphabets in American Sign Language on an ARM Cortex-M7 microcontroller having just 496 KB of framebuffer RAM. Leveraging parameter quantization is a common technique that might cause varying drops in test accuracy. This paper proposes using interpolation as augmentation amongst other techniques as an efficient method of reducing this drop, which also helps the model generalize well to previously unseen noisy data. The proposed model is about 185 KB postquantization and inference speed is 20 frames per second.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.