Truncated hemoglobins (Hbs) are small hemoproteins, identified in microorganisms and in some plants, forming a separate cluster within the Hb superfamily. Two distantly related truncated Hbs, trHbN and trHbO, are expressed at different developmental stages in Mycobacterium tuberculosis. Sequence analysis shows that the two proteins share 18% amino acid identities and belong to different groups within the truncated Hb cluster. Although a specific defense role against nitrosative stress has been ascribed to trHbN (expressed during the Mycobacterium stationary phase), no clear functions have been recognized for trHbO, which is expressed throughout the Mycobacterium growth phase. The 2.1-Å crystal structure of M. tuberculosis cyano-met trHbO shows that the protein assembles in a compact dodecamer. Six of the dodecamer subunits are characterized by a double conformation for their CD regions and, most notably, by a covalent bond linking the phenolic O atom of TyrB10 to the aromatic ring of TyrCD1, in the heme distal cavity. All 12 subunits display a cyanide ion bound to the heme Fe atom, stabilized by a tight hydrogen-bonded network based on the (globin very rare) TyrCD1 and TrpG8 residues. The small apolar AlaE7 residue leaves room for ligand access to the heme distal site through the conventional ''E7 path,'' as proposed for myoglobin. Different from trHbN, where a 20-Å protein matrix tunnel is held to sustain ligand diffusion to an otherwise inaccessible heme distal site, the topologically related region in trHbO hosts two protein matrix cavities.T runcated hemoglobins (trHbs) are a class of small oxygenbinding hemoproteins, dispersed in eubacteria, cyanobacteria, protozoa, and plants, recently recognized as a separate cluster within the hemoglobin (Hb) superfamily. On the basis of amino acid sequence analysis, three phylogenetic groups (groups I, II, and III) have been identified within the trHb family; some organisms contain genes from more than one group, suggesting different functions for trHbs belonging to the diverse groups (1). Crystal structures of three group I trHbs (2, 3) revealed that trHbs are clearly not just another variation on the motif of vertebrate myoglobin (Mb) and Hb. Neither are they similar to nonvertebrate Hbs, including the heme-containing domain of flavohemoglobins, nor to the plant symbiotic and nonsymbiotic Hbs (4-10). Major structural differences associated with known trHbs are an unprecedented 2-on-2 ␣-helical sandwich fold, resulting from striking editing of the classical 3-on-3 globin ␣-helical sandwich, and an extended hydrophobic tunnel͞cavity network linking the solvent space and the distal heme pocket (1-3). Much smaller and topologically unrelated cavities, known by their ability to incorporate Xe atoms, have been found in Mb and interpreted as temporary ligand-docking sites (11,12). In trHbs, the positioning and size of the hydrophobic tunnel suggest important roles in controlling ligand access to the heme, in ligand storage, and͞or accumulation (1-3).An additional major diffe...